专利名称:基于代价敏感学习的变压器模糊谨慎推理故障诊断方法
申请号: CN201710974847.3
发明人: 周东华;彭飞;卢晓
摘要:
本发明公开了一种基于代价敏感学习的变压器模糊谨慎推理故障诊断方法,属于变压器状态评估与故障诊断领域,本发明在获取变压器状态评估初始样本集并设置代价敏感初设矩阵的基础上,首先,结合Sigmoid多属性软化决策,构造变压器故障诊断多分类支持向量矩阵模型;然后,对支持向量矩阵进行归一化有序加权平均,计算模糊谨慎隶属度权重;最后,对加权模糊谨慎隶属度进行基于PCR5方法的互补置信分配与信息融合,并基于信度分配融合终值进行变压器故障诊断决策判定;在此过程中,以误诊断样本数最小为优化目标,基于模糊谨慎证据推理过程迭代修正代价敏感矩阵相应代价惩罚元素,实现所述故障诊断模型的在线学习功能。